3.1.64 \(\int \frac {1}{x^2 (a x^2+b x^3+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=343 \[ \frac {b \left (21 b^2-68 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{8 a^3 x^4 \left (b^2-4 a c\right )}-\frac {\left (9 b^2-20 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{4 a^2 x^5 \left (b^2-4 a c\right )}-\frac {15 \left (16 a^2 c^2-56 a b^2 c+21 b^4\right ) \tanh ^{-1}\left (\frac {x (2 a+b x)}{2 \sqrt {a} \sqrt {a x^2+b x^3+c x^4}}\right )}{128 a^{11/2}}+\frac {b \left (1808 a^2 c^2-1680 a b^2 c+315 b^4\right ) \sqrt {a x^2+b x^3+c x^4}}{64 a^5 x^2 \left (b^2-4 a c\right )}-\frac {\left (240 a^2 c^2-448 a b^2 c+105 b^4\right ) \sqrt {a x^2+b x^3+c x^4}}{32 a^4 x^3 \left (b^2-4 a c\right )}+\frac {2 \left (-2 a c+b^2+b c x\right )}{a x^3 \left (b^2-4 a c\right ) \sqrt {a x^2+b x^3+c x^4}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.62, antiderivative size = 343, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {1924, 1951, 12, 1904, 206} \begin {gather*} \frac {b \left (1808 a^2 c^2-1680 a b^2 c+315 b^4\right ) \sqrt {a x^2+b x^3+c x^4}}{64 a^5 x^2 \left (b^2-4 a c\right )}-\frac {\left (240 a^2 c^2-448 a b^2 c+105 b^4\right ) \sqrt {a x^2+b x^3+c x^4}}{32 a^4 x^3 \left (b^2-4 a c\right )}-\frac {15 \left (16 a^2 c^2-56 a b^2 c+21 b^4\right ) \tanh ^{-1}\left (\frac {x (2 a+b x)}{2 \sqrt {a} \sqrt {a x^2+b x^3+c x^4}}\right )}{128 a^{11/2}}+\frac {b \left (21 b^2-68 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{8 a^3 x^4 \left (b^2-4 a c\right )}-\frac {\left (9 b^2-20 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{4 a^2 x^5 \left (b^2-4 a c\right )}+\frac {2 \left (-2 a c+b^2+b c x\right )}{a x^3 \left (b^2-4 a c\right ) \sqrt {a x^2+b x^3+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(a*x^2 + b*x^3 + c*x^4)^(3/2)),x]

[Out]

(2*(b^2 - 2*a*c + b*c*x))/(a*(b^2 - 4*a*c)*x^3*Sqrt[a*x^2 + b*x^3 + c*x^4]) - ((9*b^2 - 20*a*c)*Sqrt[a*x^2 + b
*x^3 + c*x^4])/(4*a^2*(b^2 - 4*a*c)*x^5) + (b*(21*b^2 - 68*a*c)*Sqrt[a*x^2 + b*x^3 + c*x^4])/(8*a^3*(b^2 - 4*a
*c)*x^4) - ((105*b^4 - 448*a*b^2*c + 240*a^2*c^2)*Sqrt[a*x^2 + b*x^3 + c*x^4])/(32*a^4*(b^2 - 4*a*c)*x^3) + (b
*(315*b^4 - 1680*a*b^2*c + 1808*a^2*c^2)*Sqrt[a*x^2 + b*x^3 + c*x^4])/(64*a^5*(b^2 - 4*a*c)*x^2) - (15*(21*b^4
 - 56*a*b^2*c + 16*a^2*c^2)*ArcTanh[(x*(2*a + b*x))/(2*Sqrt[a]*Sqrt[a*x^2 + b*x^3 + c*x^4])])/(128*a^(11/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 1904

Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Dist[-2/(n - 2), Subst[Int[1/(4*a
 - x^2), x], x, (x*(2*a + b*x^(n - 2)))/Sqrt[a*x^2 + b*x^n + c*x^r]], x] /; FreeQ[{a, b, c, n, r}, x] && EqQ[r
, 2*n - 2] && PosQ[n - 2] && NeQ[b^2 - 4*a*c, 0]

Rule 1924

Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> -Simp[(x^(m - q + 1
)*(b^2 - 2*a*c + b*c*x^(n - q))*(a*x^q + b*x^n + c*x^(2*n - q))^(p + 1))/(a*(n - q)*(p + 1)*(b^2 - 4*a*c)), x]
 + Dist[1/(a*(n - q)*(p + 1)*(b^2 - 4*a*c)), Int[x^(m - q)*(b^2*(m + p*q + (n - q)*(p + 1) + 1) - 2*a*c*(m + p
*q + 2*(n - q)*(p + 1) + 1) + b*c*(m + p*q + (n - q)*(2*p + 3) + 1)*x^(n - q))*(a*x^q + b*x^n + c*x^(2*n - q))
^(p + 1), x], x] /; FreeQ[{a, b, c}, x] && EqQ[r, 2*n - q] && PosQ[n - q] &&  !IntegerQ[p] && NeQ[b^2 - 4*a*c,
 0] && IGtQ[n, 0] && LtQ[p, -1] && RationalQ[m, q] && LtQ[m + p*q + 1, n - q]

Rule 1951

Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Sym
bol] :> Simp[(A*x^(m - q + 1)*(a*x^q + b*x^n + c*x^(2*n - q))^(p + 1))/(a*(m + p*q + 1)), x] + Dist[1/(a*(m +
p*q + 1)), Int[x^(m + n - q)*Simp[a*B*(m + p*q + 1) - A*b*(m + p*q + (n - q)*(p + 1) + 1) - A*c*(m + p*q + 2*(
n - q)*(p + 1) + 1)*x^(n - q), x]*(a*x^q + b*x^n + c*x^(2*n - q))^p, x], x] /; FreeQ[{a, b, c, A, B}, x] && Eq
Q[r, n - q] && EqQ[j, 2*n - q] &&  !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && RationalQ[m, p, q] &&
((GeQ[p, -1] && LtQ[p, 0]) || EqQ[m + p*q + (n - q)*(2*p + 1) + 1, 0]) && LeQ[m + p*q, -(n - q)] && NeQ[m + p*
q + 1, 0]

Rubi steps

\begin {align*} \int \frac {1}{x^2 \left (a x^2+b x^3+c x^4\right )^{3/2}} \, dx &=\frac {2 \left (b^2-2 a c+b c x\right )}{a \left (b^2-4 a c\right ) x^3 \sqrt {a x^2+b x^3+c x^4}}-\frac {2 \int \frac {-\frac {9 b^2}{2}+10 a c-4 b c x}{x^4 \sqrt {a x^2+b x^3+c x^4}} \, dx}{a \left (b^2-4 a c\right )}\\ &=\frac {2 \left (b^2-2 a c+b c x\right )}{a \left (b^2-4 a c\right ) x^3 \sqrt {a x^2+b x^3+c x^4}}-\frac {\left (9 b^2-20 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{4 a^2 \left (b^2-4 a c\right ) x^5}+\frac {\int \frac {-\frac {3}{4} b \left (21 b^2-68 a c\right )-\frac {3}{2} c \left (9 b^2-20 a c\right ) x}{x^3 \sqrt {a x^2+b x^3+c x^4}} \, dx}{2 a^2 \left (b^2-4 a c\right )}\\ &=\frac {2 \left (b^2-2 a c+b c x\right )}{a \left (b^2-4 a c\right ) x^3 \sqrt {a x^2+b x^3+c x^4}}-\frac {\left (9 b^2-20 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{4 a^2 \left (b^2-4 a c\right ) x^5}+\frac {b \left (21 b^2-68 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{8 a^3 \left (b^2-4 a c\right ) x^4}-\frac {\int \frac {-\frac {3}{8} \left (105 b^4-448 a b^2 c+240 a^2 c^2\right )-\frac {3}{2} b c \left (21 b^2-68 a c\right ) x}{x^2 \sqrt {a x^2+b x^3+c x^4}} \, dx}{6 a^3 \left (b^2-4 a c\right )}\\ &=\frac {2 \left (b^2-2 a c+b c x\right )}{a \left (b^2-4 a c\right ) x^3 \sqrt {a x^2+b x^3+c x^4}}-\frac {\left (9 b^2-20 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{4 a^2 \left (b^2-4 a c\right ) x^5}+\frac {b \left (21 b^2-68 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{8 a^3 \left (b^2-4 a c\right ) x^4}-\frac {\left (105 b^4-448 a b^2 c+240 a^2 c^2\right ) \sqrt {a x^2+b x^3+c x^4}}{32 a^4 \left (b^2-4 a c\right ) x^3}+\frac {\int \frac {-\frac {3}{16} b \left (315 b^4-1680 a b^2 c+1808 a^2 c^2\right )-\frac {3}{8} c \left (105 b^4-448 a b^2 c+240 a^2 c^2\right ) x}{x \sqrt {a x^2+b x^3+c x^4}} \, dx}{12 a^4 \left (b^2-4 a c\right )}\\ &=\frac {2 \left (b^2-2 a c+b c x\right )}{a \left (b^2-4 a c\right ) x^3 \sqrt {a x^2+b x^3+c x^4}}-\frac {\left (9 b^2-20 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{4 a^2 \left (b^2-4 a c\right ) x^5}+\frac {b \left (21 b^2-68 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{8 a^3 \left (b^2-4 a c\right ) x^4}-\frac {\left (105 b^4-448 a b^2 c+240 a^2 c^2\right ) \sqrt {a x^2+b x^3+c x^4}}{32 a^4 \left (b^2-4 a c\right ) x^3}+\frac {b \left (315 b^4-1680 a b^2 c+1808 a^2 c^2\right ) \sqrt {a x^2+b x^3+c x^4}}{64 a^5 \left (b^2-4 a c\right ) x^2}-\frac {\int -\frac {45 \left (b^2-4 a c\right ) \left (21 b^4-56 a b^2 c+16 a^2 c^2\right )}{32 \sqrt {a x^2+b x^3+c x^4}} \, dx}{12 a^5 \left (b^2-4 a c\right )}\\ &=\frac {2 \left (b^2-2 a c+b c x\right )}{a \left (b^2-4 a c\right ) x^3 \sqrt {a x^2+b x^3+c x^4}}-\frac {\left (9 b^2-20 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{4 a^2 \left (b^2-4 a c\right ) x^5}+\frac {b \left (21 b^2-68 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{8 a^3 \left (b^2-4 a c\right ) x^4}-\frac {\left (105 b^4-448 a b^2 c+240 a^2 c^2\right ) \sqrt {a x^2+b x^3+c x^4}}{32 a^4 \left (b^2-4 a c\right ) x^3}+\frac {b \left (315 b^4-1680 a b^2 c+1808 a^2 c^2\right ) \sqrt {a x^2+b x^3+c x^4}}{64 a^5 \left (b^2-4 a c\right ) x^2}+\frac {\left (15 \left (21 b^4-56 a b^2 c+16 a^2 c^2\right )\right ) \int \frac {1}{\sqrt {a x^2+b x^3+c x^4}} \, dx}{128 a^5}\\ &=\frac {2 \left (b^2-2 a c+b c x\right )}{a \left (b^2-4 a c\right ) x^3 \sqrt {a x^2+b x^3+c x^4}}-\frac {\left (9 b^2-20 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{4 a^2 \left (b^2-4 a c\right ) x^5}+\frac {b \left (21 b^2-68 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{8 a^3 \left (b^2-4 a c\right ) x^4}-\frac {\left (105 b^4-448 a b^2 c+240 a^2 c^2\right ) \sqrt {a x^2+b x^3+c x^4}}{32 a^4 \left (b^2-4 a c\right ) x^3}+\frac {b \left (315 b^4-1680 a b^2 c+1808 a^2 c^2\right ) \sqrt {a x^2+b x^3+c x^4}}{64 a^5 \left (b^2-4 a c\right ) x^2}-\frac {\left (15 \left (21 b^4-56 a b^2 c+16 a^2 c^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {x (2 a+b x)}{\sqrt {a x^2+b x^3+c x^4}}\right )}{64 a^5}\\ &=\frac {2 \left (b^2-2 a c+b c x\right )}{a \left (b^2-4 a c\right ) x^3 \sqrt {a x^2+b x^3+c x^4}}-\frac {\left (9 b^2-20 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{4 a^2 \left (b^2-4 a c\right ) x^5}+\frac {b \left (21 b^2-68 a c\right ) \sqrt {a x^2+b x^3+c x^4}}{8 a^3 \left (b^2-4 a c\right ) x^4}-\frac {\left (105 b^4-448 a b^2 c+240 a^2 c^2\right ) \sqrt {a x^2+b x^3+c x^4}}{32 a^4 \left (b^2-4 a c\right ) x^3}+\frac {b \left (315 b^4-1680 a b^2 c+1808 a^2 c^2\right ) \sqrt {a x^2+b x^3+c x^4}}{64 a^5 \left (b^2-4 a c\right ) x^2}-\frac {15 \left (21 b^4-56 a b^2 c+16 a^2 c^2\right ) \tanh ^{-1}\left (\frac {x (2 a+b x)}{2 \sqrt {a} \sqrt {a x^2+b x^3+c x^4}}\right )}{128 a^{11/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 272, normalized size = 0.79 \begin {gather*} \frac {15 x^4 \left (-64 a^3 c^3+240 a^2 b^2 c^2-140 a b^4 c+21 b^6\right ) \sqrt {a+x (b+c x)} \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+x (b+c x)}}\right )-2 \sqrt {a} \left (64 a^5 c-16 a^4 \left (b^2+6 b c x+10 c^2 x^2\right )+8 a^3 x \left (3 b^3+26 b^2 c x+98 b c^2 x^2-60 c^3 x^3\right )+2 a^2 b x^2 \left (-21 b^3-308 b^2 c x+1352 b c^2 x^2+904 c^3 x^3\right )+105 a b^3 x^3 \left (b^2-18 b c x-16 c^2 x^2\right )+315 b^5 x^4 (b+c x)\right )}{128 a^{11/2} x^3 \left (4 a c-b^2\right ) \sqrt {x^2 (a+x (b+c x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(a*x^2 + b*x^3 + c*x^4)^(3/2)),x]

[Out]

(-2*Sqrt[a]*(64*a^5*c + 315*b^5*x^4*(b + c*x) + 105*a*b^3*x^3*(b^2 - 18*b*c*x - 16*c^2*x^2) - 16*a^4*(b^2 + 6*
b*c*x + 10*c^2*x^2) + 8*a^3*x*(3*b^3 + 26*b^2*c*x + 98*b*c^2*x^2 - 60*c^3*x^3) + 2*a^2*b*x^2*(-21*b^3 - 308*b^
2*c*x + 1352*b*c^2*x^2 + 904*c^3*x^3)) + 15*(21*b^6 - 140*a*b^4*c + 240*a^2*b^2*c^2 - 64*a^3*c^3)*x^4*Sqrt[a +
 x*(b + c*x)]*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + x*(b + c*x)])])/(128*a^(11/2)*(-b^2 + 4*a*c)*x^3*Sqrt[x^
2*(a + x*(b + c*x))])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 5.24, size = 331, normalized size = 0.97 \begin {gather*} \frac {15 \left (16 a^2 c^2-56 a b^2 c+21 b^4\right ) \log \left (2 \sqrt {a} \sqrt {a x^2+b x^3+c x^4}-2 a x-b x^2\right )}{128 a^{11/2}}-\frac {15 \log (x) \left (16 a^2 c^2-56 a b^2 c+21 b^4\right )}{64 a^{11/2}}+\frac {\sqrt {a x^2+b x^3+c x^4} \left (-64 a^5 c+16 a^4 b^2+96 a^4 b c x+160 a^4 c^2 x^2-24 a^3 b^3 x-208 a^3 b^2 c x^2-784 a^3 b c^2 x^3+480 a^3 c^3 x^4+42 a^2 b^4 x^2+616 a^2 b^3 c x^3-2704 a^2 b^2 c^2 x^4-1808 a^2 b c^3 x^5-105 a b^5 x^3+1890 a b^4 c x^4+1680 a b^3 c^2 x^5-315 b^6 x^4-315 b^5 c x^5\right )}{64 a^5 x^5 \left (4 a c-b^2\right ) \left (a+b x+c x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x^2*(a*x^2 + b*x^3 + c*x^4)^(3/2)),x]

[Out]

(Sqrt[a*x^2 + b*x^3 + c*x^4]*(16*a^4*b^2 - 64*a^5*c - 24*a^3*b^3*x + 96*a^4*b*c*x + 42*a^2*b^4*x^2 - 208*a^3*b
^2*c*x^2 + 160*a^4*c^2*x^2 - 105*a*b^5*x^3 + 616*a^2*b^3*c*x^3 - 784*a^3*b*c^2*x^3 - 315*b^6*x^4 + 1890*a*b^4*
c*x^4 - 2704*a^2*b^2*c^2*x^4 + 480*a^3*c^3*x^4 - 315*b^5*c*x^5 + 1680*a*b^3*c^2*x^5 - 1808*a^2*b*c^3*x^5))/(64
*a^5*(-b^2 + 4*a*c)*x^5*(a + b*x + c*x^2)) - (15*(21*b^4 - 56*a*b^2*c + 16*a^2*c^2)*Log[x])/(64*a^(11/2)) + (1
5*(21*b^4 - 56*a*b^2*c + 16*a^2*c^2)*Log[-2*a*x - b*x^2 + 2*Sqrt[a]*Sqrt[a*x^2 + b*x^3 + c*x^4]])/(128*a^(11/2
))

________________________________________________________________________________________

fricas [A]  time = 2.35, size = 866, normalized size = 2.52 \begin {gather*} \left [\frac {15 \, {\left ({\left (21 \, b^{6} c - 140 \, a b^{4} c^{2} + 240 \, a^{2} b^{2} c^{3} - 64 \, a^{3} c^{4}\right )} x^{7} + {\left (21 \, b^{7} - 140 \, a b^{5} c + 240 \, a^{2} b^{3} c^{2} - 64 \, a^{3} b c^{3}\right )} x^{6} + {\left (21 \, a b^{6} - 140 \, a^{2} b^{4} c + 240 \, a^{3} b^{2} c^{2} - 64 \, a^{4} c^{3}\right )} x^{5}\right )} \sqrt {a} \log \left (-\frac {8 \, a b x^{2} + {\left (b^{2} + 4 \, a c\right )} x^{3} + 8 \, a^{2} x - 4 \, \sqrt {c x^{4} + b x^{3} + a x^{2}} {\left (b x + 2 \, a\right )} \sqrt {a}}{x^{3}}\right ) - 4 \, {\left (16 \, a^{5} b^{2} - 64 \, a^{6} c - {\left (315 \, a b^{5} c - 1680 \, a^{2} b^{3} c^{2} + 1808 \, a^{3} b c^{3}\right )} x^{5} - {\left (315 \, a b^{6} - 1890 \, a^{2} b^{4} c + 2704 \, a^{3} b^{2} c^{2} - 480 \, a^{4} c^{3}\right )} x^{4} - 7 \, {\left (15 \, a^{2} b^{5} - 88 \, a^{3} b^{3} c + 112 \, a^{4} b c^{2}\right )} x^{3} + 2 \, {\left (21 \, a^{3} b^{4} - 104 \, a^{4} b^{2} c + 80 \, a^{5} c^{2}\right )} x^{2} - 24 \, {\left (a^{4} b^{3} - 4 \, a^{5} b c\right )} x\right )} \sqrt {c x^{4} + b x^{3} + a x^{2}}}{256 \, {\left ({\left (a^{6} b^{2} c - 4 \, a^{7} c^{2}\right )} x^{7} + {\left (a^{6} b^{3} - 4 \, a^{7} b c\right )} x^{6} + {\left (a^{7} b^{2} - 4 \, a^{8} c\right )} x^{5}\right )}}, \frac {15 \, {\left ({\left (21 \, b^{6} c - 140 \, a b^{4} c^{2} + 240 \, a^{2} b^{2} c^{3} - 64 \, a^{3} c^{4}\right )} x^{7} + {\left (21 \, b^{7} - 140 \, a b^{5} c + 240 \, a^{2} b^{3} c^{2} - 64 \, a^{3} b c^{3}\right )} x^{6} + {\left (21 \, a b^{6} - 140 \, a^{2} b^{4} c + 240 \, a^{3} b^{2} c^{2} - 64 \, a^{4} c^{3}\right )} x^{5}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {c x^{4} + b x^{3} + a x^{2}} {\left (b x + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{3} + a b x^{2} + a^{2} x\right )}}\right ) - 2 \, {\left (16 \, a^{5} b^{2} - 64 \, a^{6} c - {\left (315 \, a b^{5} c - 1680 \, a^{2} b^{3} c^{2} + 1808 \, a^{3} b c^{3}\right )} x^{5} - {\left (315 \, a b^{6} - 1890 \, a^{2} b^{4} c + 2704 \, a^{3} b^{2} c^{2} - 480 \, a^{4} c^{3}\right )} x^{4} - 7 \, {\left (15 \, a^{2} b^{5} - 88 \, a^{3} b^{3} c + 112 \, a^{4} b c^{2}\right )} x^{3} + 2 \, {\left (21 \, a^{3} b^{4} - 104 \, a^{4} b^{2} c + 80 \, a^{5} c^{2}\right )} x^{2} - 24 \, {\left (a^{4} b^{3} - 4 \, a^{5} b c\right )} x\right )} \sqrt {c x^{4} + b x^{3} + a x^{2}}}{128 \, {\left ({\left (a^{6} b^{2} c - 4 \, a^{7} c^{2}\right )} x^{7} + {\left (a^{6} b^{3} - 4 \, a^{7} b c\right )} x^{6} + {\left (a^{7} b^{2} - 4 \, a^{8} c\right )} x^{5}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^4+b*x^3+a*x^2)^(3/2),x, algorithm="fricas")

[Out]

[1/256*(15*((21*b^6*c - 140*a*b^4*c^2 + 240*a^2*b^2*c^3 - 64*a^3*c^4)*x^7 + (21*b^7 - 140*a*b^5*c + 240*a^2*b^
3*c^2 - 64*a^3*b*c^3)*x^6 + (21*a*b^6 - 140*a^2*b^4*c + 240*a^3*b^2*c^2 - 64*a^4*c^3)*x^5)*sqrt(a)*log(-(8*a*b
*x^2 + (b^2 + 4*a*c)*x^3 + 8*a^2*x - 4*sqrt(c*x^4 + b*x^3 + a*x^2)*(b*x + 2*a)*sqrt(a))/x^3) - 4*(16*a^5*b^2 -
 64*a^6*c - (315*a*b^5*c - 1680*a^2*b^3*c^2 + 1808*a^3*b*c^3)*x^5 - (315*a*b^6 - 1890*a^2*b^4*c + 2704*a^3*b^2
*c^2 - 480*a^4*c^3)*x^4 - 7*(15*a^2*b^5 - 88*a^3*b^3*c + 112*a^4*b*c^2)*x^3 + 2*(21*a^3*b^4 - 104*a^4*b^2*c +
80*a^5*c^2)*x^2 - 24*(a^4*b^3 - 4*a^5*b*c)*x)*sqrt(c*x^4 + b*x^3 + a*x^2))/((a^6*b^2*c - 4*a^7*c^2)*x^7 + (a^6
*b^3 - 4*a^7*b*c)*x^6 + (a^7*b^2 - 4*a^8*c)*x^5), 1/128*(15*((21*b^6*c - 140*a*b^4*c^2 + 240*a^2*b^2*c^3 - 64*
a^3*c^4)*x^7 + (21*b^7 - 140*a*b^5*c + 240*a^2*b^3*c^2 - 64*a^3*b*c^3)*x^6 + (21*a*b^6 - 140*a^2*b^4*c + 240*a
^3*b^2*c^2 - 64*a^4*c^3)*x^5)*sqrt(-a)*arctan(1/2*sqrt(c*x^4 + b*x^3 + a*x^2)*(b*x + 2*a)*sqrt(-a)/(a*c*x^3 +
a*b*x^2 + a^2*x)) - 2*(16*a^5*b^2 - 64*a^6*c - (315*a*b^5*c - 1680*a^2*b^3*c^2 + 1808*a^3*b*c^3)*x^5 - (315*a*
b^6 - 1890*a^2*b^4*c + 2704*a^3*b^2*c^2 - 480*a^4*c^3)*x^4 - 7*(15*a^2*b^5 - 88*a^3*b^3*c + 112*a^4*b*c^2)*x^3
 + 2*(21*a^3*b^4 - 104*a^4*b^2*c + 80*a^5*c^2)*x^2 - 24*(a^4*b^3 - 4*a^5*b*c)*x)*sqrt(c*x^4 + b*x^3 + a*x^2))/
((a^6*b^2*c - 4*a^7*c^2)*x^7 + (a^6*b^3 - 4*a^7*b*c)*x^6 + (a^7*b^2 - 4*a^8*c)*x^5)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (c x^{4} + b x^{3} + a x^{2}\right )}^{\frac {3}{2}} x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^4+b*x^3+a*x^2)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((c*x^4 + b*x^3 + a*x^2)^(3/2)*x^2), x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 446, normalized size = 1.30 \begin {gather*} -\frac {\left (c \,x^{2}+b x +a \right ) \left (3616 a^{\frac {7}{2}} b \,c^{3} x^{5}-3360 a^{\frac {5}{2}} b^{3} c^{2} x^{5}+630 a^{\frac {3}{2}} b^{5} c \,x^{5}+960 \sqrt {c \,x^{2}+b x +a}\, a^{4} c^{3} x^{4} \ln \left (\frac {b x +2 a +2 \sqrt {c \,x^{2}+b x +a}\, \sqrt {a}}{x}\right )-3600 \sqrt {c \,x^{2}+b x +a}\, a^{3} b^{2} c^{2} x^{4} \ln \left (\frac {b x +2 a +2 \sqrt {c \,x^{2}+b x +a}\, \sqrt {a}}{x}\right )+2100 \sqrt {c \,x^{2}+b x +a}\, a^{2} b^{4} c \,x^{4} \ln \left (\frac {b x +2 a +2 \sqrt {c \,x^{2}+b x +a}\, \sqrt {a}}{x}\right )-315 \sqrt {c \,x^{2}+b x +a}\, a \,b^{6} x^{4} \ln \left (\frac {b x +2 a +2 \sqrt {c \,x^{2}+b x +a}\, \sqrt {a}}{x}\right )-960 a^{\frac {9}{2}} c^{3} x^{4}+5408 a^{\frac {7}{2}} b^{2} c^{2} x^{4}-3780 a^{\frac {5}{2}} b^{4} c \,x^{4}+630 a^{\frac {3}{2}} b^{6} x^{4}+1568 a^{\frac {9}{2}} b \,c^{2} x^{3}-1232 a^{\frac {7}{2}} b^{3} c \,x^{3}+210 a^{\frac {5}{2}} b^{5} x^{3}-320 a^{\frac {11}{2}} c^{2} x^{2}+416 a^{\frac {9}{2}} b^{2} c \,x^{2}-84 a^{\frac {7}{2}} b^{4} x^{2}-192 a^{\frac {11}{2}} b c x +48 a^{\frac {9}{2}} b^{3} x +128 a^{\frac {13}{2}} c -32 a^{\frac {11}{2}} b^{2}\right )}{128 \left (c \,x^{4}+b \,x^{3}+a \,x^{2}\right )^{\frac {3}{2}} \left (4 a c -b^{2}\right ) a^{\frac {13}{2}} x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(c*x^4+b*x^3+a*x^2)^(3/2),x)

[Out]

-1/128/x*(c*x^2+b*x+a)*(3616*a^(7/2)*x^5*b*c^3-3360*a^(5/2)*x^5*b^3*c^2+630*a^(3/2)*x^5*b^5*c+960*(c*x^2+b*x+a
)^(1/2)*ln((b*x+2*a+2*(c*x^2+b*x+a)^(1/2)*a^(1/2))/x)*x^4*a^4*c^3-3600*(c*x^2+b*x+a)^(1/2)*ln((b*x+2*a+2*(c*x^
2+b*x+a)^(1/2)*a^(1/2))/x)*x^4*a^3*b^2*c^2+2100*(c*x^2+b*x+a)^(1/2)*ln((b*x+2*a+2*(c*x^2+b*x+a)^(1/2)*a^(1/2))
/x)*x^4*a^2*b^4*c-315*(c*x^2+b*x+a)^(1/2)*ln((b*x+2*a+2*(c*x^2+b*x+a)^(1/2)*a^(1/2))/x)*x^4*a*b^6-960*a^(9/2)*
x^4*c^3+5408*a^(7/2)*x^4*b^2*c^2-3780*a^(5/2)*x^4*b^4*c+630*a^(3/2)*x^4*b^6+1568*a^(9/2)*x^3*b*c^2-1232*a^(7/2
)*x^3*b^3*c+210*a^(5/2)*x^3*b^5-320*a^(11/2)*x^2*c^2+416*a^(9/2)*x^2*b^2*c-84*a^(7/2)*x^2*b^4-192*a^(11/2)*x*b
*c+48*a^(9/2)*x*b^3+128*a^(13/2)*c-32*a^(11/2)*b^2)/(c*x^4+b*x^3+a*x^2)^(3/2)/a^(13/2)/(4*a*c-b^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (c x^{4} + b x^{3} + a x^{2}\right )}^{\frac {3}{2}} x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^4+b*x^3+a*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^4 + b*x^3 + a*x^2)^(3/2)*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^2\,{\left (c\,x^4+b\,x^3+a\,x^2\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*(a*x^2 + b*x^3 + c*x^4)^(3/2)),x)

[Out]

int(1/(x^2*(a*x^2 + b*x^3 + c*x^4)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{2} \left (x^{2} \left (a + b x + c x^{2}\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(c*x**4+b*x**3+a*x**2)**(3/2),x)

[Out]

Integral(1/(x**2*(x**2*(a + b*x + c*x**2))**(3/2)), x)

________________________________________________________________________________________